

Welcome to Serpent Tracker’s documentation!

Contents:

	Getting Up and Running Locally
	Setting Up Development Environment

	Setup Email Backend

	Celery

	Sass Compilation & Live Reloading

	Summary

	Getting Up and Running Locally With Docker
	Prerequisites

	Build the Stack

	Run the Stack

	Execute Management Commands

	(Optionally) Designate your Docker Development Server IP

	Configuring the Environment

	Tips & Tricks

	Settings
	Other Environment Settings

	Testing
	Pytest

	Coverage

	Docker Remote Debugging
	Configure Remote Python Interpreter

	Known issues

Indices and tables

	Index

	Module Index

	Search Page

Getting Up and Running Locally

Setting Up Development Environment

Make sure to have the following on your host:

	Python 3.7

	PostgreSQL [https://www.postgresql.org/download/].

	Redis [https://redis.io/download], if using Celery

First things first.

	Create a virtualenv:

$ python3.7 -m venv <virtual env path>

	Activate the virtualenv you have just created:

$ source <virtual env path>/bin/activate

	Install development requirements:

$ pip install -r requirements/local.txt
$ pre-commit install

 .. note::

 the `pre-commit` exists in the generated project as default.
 for the details of `pre-commit`, follow the [site of pre-commit](https://pre-commit.com/).

	Create a new PostgreSQL database using createdb [https://www.postgresql.org/docs/current/static/app-createdb.html]:

$ createdb <what you have entered as the project_slug at setup stage> -U postgres --password <password>

Note

if this is the first time a database is created on your machine you might need an
initial PostgreSQL set up [http://suite.opengeo.org/docs/latest/dataadmin/pgGettingStarted/firstconnect.html] to allow local connections & set a password for
the postgres user. The postgres documentation [https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html] explains the syntax of the config file
that you need to change.

	Set the environment variables for your database(s):

$ export DATABASE_URL=postgres://postgres:<password>@127.0.0.1:5432/<DB name given to createdb>
Optional: set broker URL if using Celery
$ export CELERY_BROKER_URL=redis://localhost:6379/0

Note

Check out the Settings page for a comprehensive list of the environments variables.

See also

To help setting up your environment variables, you have a few options:

	create an .env file in the root of your project and define all the variables you need in it.
Then you just need to have DJANGO_READ_DOT_ENV_FILE=True in your machine and all the variables
will be read.

	Use a local environment manager like direnv [https://direnv.net/]

	Apply migrations:

$ python manage.py migrate

	See the application being served through Django development server:

$ python manage.py runserver 0.0.0.0:8000

Setup Email Backend

MailHog

Note

In order for the project to support MailHog it must have been bootstrapped with use_mailhog set to y.

MailHog is used to receive emails during development, it is written in Go and has no external dependencies.

For instance, one of the packages we depend upon, django-allauth sends verification emails to new users signing up as well as to the existing ones who have not yet verified themselves.

	Download the latest MailHog release [https://github.com/mailhog/MailHog] for your OS.

	Rename the build to MailHog.

	Copy the file to the project root.

	Make it executable:

$ chmod +x MailHog

	Spin up another terminal window and start it there:

./MailHog

	Check out http://127.0.0.1:8025/ to see how it goes.

Now you have your own mail server running locally, ready to receive whatever you send it.

Console

Note

If you have generated your project with use_mailhog set to n this will be a default setup.

Alternatively, deliver emails over console via EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'.

In production, we have Mailgun [https://www.mailgun.com/] configured to have your back!

Celery

If the project is configured to use Celery as a task scheduler then by default tasks are set to run on the main thread
when developing locally. If you have the appropriate setup on your local machine then set the following
in config/settings/local.py:

CELERY_TASK_ALWAYS_EAGER = False

Sass Compilation & Live Reloading

If you’d like to take advantage of live reloading and Sass compilation you can do so with a little
bit of preparation, see Sass Compilation & Live Reloading.

Summary

Congratulations, you have made it! Keep on reading to unleash full potential of Cookiecutter Django.

Getting Up and Running Locally With Docker

The steps below will get you up and running with a local development environment.
All of these commands assume you are in the root of your generated project.

Note

If you’re new to Docker, please be aware that some resources are cached system-wide
and might reappear if you generate a project multiple times with the same name (e.g.
this issue with Postgres).

Prerequisites

	Docker; if you don’t have it yet, follow the installation instructions [https://docs.docker.com/install/#supported-platforms];

	Docker Compose; refer to the official documentation for the installation guide [https://docs.docker.com/compose/install/].

Build the Stack

This can take a while, especially the first time you run this particular command on your development system:

$ docker-compose -f local.yml build

Generally, if you want to emulate production environment use production.yml instead. And this is true for any other actions you might need to perform: whenever a switch is required, just do it!

Run the Stack

This brings up both Django and PostgreSQL. The first time it is run it might take a while to get started, but subsequent runs will occur quickly.

Open a terminal at the project root and run the following for local development:

$ docker-compose -f local.yml up

You can also set the environment variable COMPOSE_FILE pointing to local.yml like this:

$ export COMPOSE_FILE=local.yml

And then run:

$ docker-compose up

To run in a detached (background) mode, just:

$ docker-compose up -d

Execute Management Commands

As with any shell command that we wish to run in our container, this is done using the docker-compose -f local.yml run --rm command:

$ docker-compose -f local.yml run --rm django python manage.py migrate
$ docker-compose -f local.yml run --rm django python manage.py createsuperuser

Here, django is the target service we are executing the commands against.

(Optionally) Designate your Docker Development Server IP

When DEBUG is set to True, the host is validated against ['localhost', '127.0.0.1', '[::1]']. This is adequate when running a virtualenv. For Docker, in the config.settings.local, add your host development server IP to INTERNAL_IPS or ALLOWED_HOSTS if the variable exists.

Configuring the Environment

This is the excerpt from your project’s local.yml:

...

postgres:
 build:
 context: .
 dockerfile: ./compose/production/postgres/Dockerfile
 volumes:
 - local_postgres_data:/var/lib/postgresql/data
 - local_postgres_data_backups:/backups
 env_file:
 - ./.envs/.local/.postgres

...

The most important thing for us here now is env_file section enlisting ./.envs/.local/.postgres. Generally, the stack’s behavior is governed by a number of environment variables (env(s), for short) residing in envs/, for instance, this is what we generate for you:

.envs
├── .local
│ ├── .django
│ └── .postgres
└── .production
 ├── .django
 └── .postgres

By convention, for any service sI in environment e (you know someenv is an environment when there is a someenv.yml file in the project root), given sI requires configuration, a .envs/.e/.sI service configuration file exists.

Consider the aforementioned .envs/.local/.postgres:

PostgreSQL
--
POSTGRES_HOST=postgres
POSTGRES_DB=<your project slug>
POSTGRES_USER=XgOWtQtJecsAbaIyslwGvFvPawftNaqO
POSTGRES_PASSWORD=jSljDz4whHuwO3aJIgVBrqEml5Ycbghorep4uVJ4xjDYQu0LfuTZdctj7y0YcCLu

The three envs we are presented with here are POSTGRES_DB, POSTGRES_USER, and POSTGRES_PASSWORD (by the way, their values have also been generated for you). You might have figured out already where these definitions will end up; it’s all the same with django service container envs.

One final touch: should you ever need to merge .envs/production/* in a single .env run the merge_production_dotenvs_in_dotenv.py:

$ python merge_production_dotenvs_in_dotenv.py

The .env file will then be created, with all your production envs residing beside each other.

Tips & Tricks

Activate a Docker Machine

This tells our computer that all future commands are specifically for the dev1 machine. Using the eval command we can switch machines as needed.:

$ eval "$(docker-machine env dev1)"

Debugging

ipdb

If you are using the following within your code to debug:

import ipdb; ipdb.set_trace()

Then you may need to run the following for it to work as desired:

$ docker-compose -f local.yml run --rm --service-ports django

django-debug-toolbar

In order for django-debug-toolbar to work designate your Docker Machine IP with INTERNAL_IPS in local.py.

Mailhog

When developing locally you can go with MailHog [https://github.com/mailhog/MailHog/] for email testing provided use_mailhog was set to y on setup. To proceed,

	make sure mailhog container is up and running;

	open up http://127.0.0.1:8025.

Celery tasks in local development

When not using docker Celery tasks are set to run in Eager mode, so that a full stack is not needed. When using docker the task
scheduler will be used by default.

If you need tasks to be executed on the main thread during development set CELERY_TASK_ALWAYS_EAGER = True in config/settings/local.py.

Possible uses could be for testing, or ease of profiling with DJDT.

Celery Flower

Flower [https://github.com/mher/flower] is a “real-time monitor and web admin for Celery distributed task queue”.

Prerequisites:

	use_docker was set to y on project initialization;

	use_celery was set to y on project initialization.

By default, it’s enabled both in local and production environments (local.yml and production.yml Docker Compose configs, respectively) through a flower service. For added security, flower requires its clients to provide authentication credentials specified as the corresponding environments’ .envs/.local/.django and .envs/.production/.django CELERY_FLOWER_USER and CELERY_FLOWER_PASSWORD environment variables. Check out localhost:5555 and see for yourself.

Settings

This project relies extensively on environment settings which will not work with Apache/mod_wsgi setups. It has been deployed successfully with both Gunicorn/Nginx and even uWSGI/Nginx.

For configuration purposes, the following table maps environment variables to their Django setting and project settings:

	Environment Variable

	Django Setting

	Development Default

	Production Default

	DJANGO_READ_DOT_ENV_FILE

	READ_DOT_ENV_FILE

	False

	False

	Environment Variable

	Django Setting

	Development Default

	Production Default

	DATABASE_URL

	DATABASES

	auto w/ Docker; postgres://project_slug w/o

	raises error

	DJANGO_ADMIN_URL

	n/a

	‘admin/’

	raises error

	DJANGO_DEBUG

	DEBUG

	True

	False

	DJANGO_SECRET_KEY

	SECRET_KEY

	auto-generated

	raises error

	DJANGO_SECURE_BROWSER_XSS_FILTER

	SECURE_BROWSER_XSS_FILTER

	n/a

	True

	DJANGO_SECURE_SSL_REDIRECT

	SECURE_SSL_REDIRECT

	n/a

	True

	DJANGO_SECURE_CONTENT_TYPE_NOSNIFF

	SECURE_CONTENT_TYPE_NOSNIFF

	n/a

	True

	DJANGO_SECURE_FRAME_DENY

	SECURE_FRAME_DENY

	n/a

	True

	DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS

	HSTS_INCLUDE_SUBDOMAINS

	n/a

	True

	DJANGO_SESSION_COOKIE_HTTPONLY

	SESSION_COOKIE_HTTPONLY

	n/a

	True

	DJANGO_SESSION_COOKIE_SECURE

	SESSION_COOKIE_SECURE

	n/a

	False

	DJANGO_DEFAULT_FROM_EMAIL

	DEFAULT_FROM_EMAIL

	n/a

	“your_project_name <noreply@your_domain_name>”

	DJANGO_SERVER_EMAIL

	SERVER_EMAIL

	n/a

	“your_project_name <noreply@your_domain_name>”

	DJANGO_EMAIL_SUBJECT_PREFIX

	EMAIL_SUBJECT_PREFIX

	n/a

	“[your_project_name] “

	DJANGO_ALLOWED_HOSTS

	ALLOWED_HOSTS

	[‘*’]

	[‘your_domain_name’]

The following table lists settings and their defaults for third-party applications, which may or may not be part of your project:

	Environment Variable

	Django Setting

	Development Default

	Production Default

	CELERY_BROKER_URL

	CELERY_BROKER_URL

	auto w/ Docker; raises error w/o

	raises error

	DJANGO_AWS_ACCESS_KEY_ID

	AWS_ACCESS_KEY_ID

	n/a

	raises error

	DJANGO_AWS_SECRET_ACCESS_KEY

	AWS_SECRET_ACCESS_KEY

	n/a

	raises error

	DJANGO_AWS_STORAGE_BUCKET_NAME

	AWS_STORAGE_BUCKET_NAME

	n/a

	raises error

	DJANGO_AWS_S3_REGION_NAME

	AWS_S3_REGION_NAME

	n/a

	None

	DJANGO_GCP_STORAGE_BUCKET_NAME

	GS_BUCKET_NAME

	n/a

	raises error

	GOOGLE_APPLICATION_CREDENTIALS

	n/a

	n/a

	raises error

	SENTRY_DSN

	SENTRY_DSN

	n/a

	raises error

	DJANGO_SENTRY_LOG_LEVEL

	SENTRY_LOG_LEVEL

	n/a

	logging.INFO

	MAILGUN_API_KEY

	MAILGUN_API_KEY

	n/a

	raises error

	MAILGUN_DOMAIN

	MAILGUN_SENDER_DOMAIN

	n/a

	raises error

	MAILGUN_API_URL

	n/a

	n/a

	“https://api.mailgun.net/v3”

Other Environment Settings

	DJANGO_ACCOUNT_ALLOW_REGISTRATION (=True)
	Allow enable or disable user registration through django-allauth without disabling other characteristics like authentication and account management. (Django Setting: ACCOUNT_ALLOW_REGISTRATION)

Testing

We encourage users to build application tests. As best practice, this should be done immediately after documentation of the application being built, before starting on any coding.

Pytest

This project uses the Pytest [https://docs.pytest.org/en/latest/example/simple.html], a framework for easily building simple and scalable tests.
After you have set up to develop locally, run the following commands to make sure the testing environment is ready:

$ pytest

You will get a readout of the users app that has already been set up with tests. If you do not want to run the pytest on the entire project, you can target a particular app by typing in its location:

$ pytest <path-to-app-in-project/app>

If you set up your project to develop locally with docker, run the following command:

$ docker-compose -f local.yml run --rm django pytest

Targeting particular apps for testing in docker follows a similar pattern as previously shown above.

Coverage

You should build your tests to provide the highest level of code coverage. You can run the pytest with code coverage by typing in the following command:

$ docker-compose -f local.yml run --rm django coverage run -m pytest

Once the tests are complete, in order to see the code coverage, run the following command:

$ docker-compose -f local.yml run --rm django coverage report

Note

At the root of the project folder, you will find the pytest.ini file. You can use this to customize [https://docs.pytest.org/en/latest/customize.html] the pytest to your liking.

There is also the .coveragerc. This is the configuration file for the coverage tool. You can find out more about configuring [https://coverage.readthedocs.io/en/v4.5.x/config.html] coverage.

See also

For unit tests, run:

$ python manage.py test

Since this is a fresh install, and there are no tests built using the Python unittest [https://docs.python.org/3/library/unittest.html#module-unittest] library yet, you should get feedback that says there were no tests carried out.

Docker Remote Debugging

To connect to python remote interpreter inside docker, you have to make sure first, that Pycharm is aware of your docker.

Go to Settings > Build, Execution, Deployment > Docker. If you are on linux, you can use docker directly using its socket unix:///var/run/docker.sock, if you are on Windows or Mac, make sure that you have docker-machine installed, then you can simply Import credentials from Docker Machine.

[image: ../_images/1.png]

Configure Remote Python Interpreter

This repository comes with already prepared “Run/Debug Configurations” for docker.

[image: ../_images/2.png]
But as you can see, at the beginning there is something wrong with them. They have red X on django icon, and they cannot be used, without configuring remote python interpteter. To do that, you have to go to Settings > Build, Execution, Deployment first.

Next, you have to add new remote python interpreter, based on already tested deployment settings. Go to Settings > Project > Project Interpreter. Click on the cog icon, and click Add Remote.

[image: ../_images/3.png]
Switch to Docker Compose and select local.yml file from directory of your project, next set Service name to django

[image: ../_images/4.png]
Having that, click OK. Close Settings panel, and wait few seconds…

[image: ../_images/7.png]
After few seconds, all Run/Debug Configurations should be ready to use.

[image: ../_images/8.png]
Things you can do with provided configuration:

	run and debug python code

[image: ../_images/f1.png]

	run and debug tests

[image: ../_images/f2.png]
[image: ../_images/f3.png]

	run and debug migrations or different django management commands

[image: ../_images/f4.png]

	and many others..

Known issues

	Pycharm hangs on “Connecting to Debugger”

[image: ../_images/issue1.png]
This might be fault of your firewall. Take a look on this ticket - https://youtrack.jetbrains.com/issue/PY-18913

	Modified files in .idea directory

Most of the files from .idea/ were added to .gitignore with a few exceptions, which were made, to provide “ready to go” configuration. After adding remote interpreter some of these files are altered by PyCharm:

[image: ../_images/issue2.png]
In theory you can remove them from repository, but then, other people will lose a ability to initialize a project from provided configurations as you did. To get rid of this annoying state, you can run command:

$ git update-index --assume-unchanged serpent_tracker.iml

Index

 D
 | P
 | V

D

 	
 	Docker

P

 	
 	pip

 	
 	PostgreSQL

V

 	
 	virtualenv

Sass Compilation & Live Reloading

If you’d like to take advantage of live reload [http://livereload.com/] and Sass compilation:

	Make sure that nodejs [http://nodejs.org/download/] is installed. Then in the project root run:

$ npm install

	Now you just need:

$ npm run dev

The base app will now run as it would with the usual manage.py runserver but with live reloading and Sass compilation enabled.
When changing your Sass files, they will be automatically recompiled and change will be reflected in your browser without refreshing.

To get live reloading to work you’ll probably need to install an appropriate browser extension [http://livereload.com/extensions/]

 _images/8.png
[

€ Docker: migrate
€ Docker: runserver
€ Docker: runserver_plus

€l Docker: tests - all

€l Docker: tests - class: TestUser

& Docker: tests - file: test_models

€l Docker: tests - module: users

Bl Docker: tests - specific: test_get_absolute_url

_images/f1.png
File Edit View Navigate Code Refactor Run Tools VCS Window Help

[reddit) 1 config) 1 settings) & common.py) (ElDocker:runserver - P # % % 5 ¥ ¥ F 5 Q
& Project .\ @ & | %- I~ | & common.py x w
v CIreddit ~/cookiecutter/reddit # - coding: utf8 - ug
> Dicompose Django settings for Reddit Clone project. z
v E1config H
i For more information on this file see
v Easettings https://docs. djangoproject. com/en/dev/ topics/settings/
2 [& _init__py
El ey For the full list of settings and their values, see
2 B = https://docs. djangoproject. con/en/dev/ref/settings/
) [& localpy
v & production.py “inport ...
[& _init__py
[& urls.py
[& wsgi.py env = environ.Env()
» Exdocs
» Erreddt £ AP CONFTGURATION
» [lrequirements DIANGO_APPS
Default Django apps:
> Ditests django. contrib. auth",
[.coveragerc ango. contrib. contenttypes®,
- ango.contrib_sessions,
B dockerignore ango_contrib_sites",
[l .editorconfig ango. contrib.messages* —
B gitattributes ango.contrib_staticfiles',
[.gitignore # Useful template tags:
B pylintrc # "django. contrib. humanize',
77 travis.yml # Adnin
& app.son *django. contrib. adnin*,
[E) CONTRIBUTORS. txt THIRD_PARTY_APPS = (=
7 devyml “Crispy_forns®, # Form layouts
| & Watches -
builtins={dict} { bytearray: <type 'bytearray'>, 'IndexError': <type 'exceptions.IndexError'>, 'all’ <built-in function all>, 'help’: Type help()l... View |+ — 4+ & [
[_doc_ = {unicode} u'\nDjango settings for Reddit Clone project.\n\nFor more information on this file, see\nhttps://docs.djangoproject.com, . View
& <module, local py: 11 @ _file_=/{str}'/app/config/settings/common.pyc'
® B import n it [_name__={str}'config settings.common'
o o [_package_={NoneType}None
= » = absolute_import = {instance} Feature: _Feature((2, 5,0, alpha, 1), (3,0, 0, 'alpha’, 0), 16384) e
Y » = environ ={module} <module 'environ’ from '/usr/local/lib/python2.7/site-packages/environ/_init_pyc'>
n » = unicode_literals = {instance}_Feature: Feature((2, 6,0, 'alpha’, 2), (3,0, 0, 'alpha’, 0), 131072)
al® o
£[?
g (Broeede
&| [®<module>, pyde 5
*

Python Console & Terminal @ g: Version Control @ 3:Find > m_% - TODO

 Event Log

Error running Docker: runserver: Can't run remote python interpreter: failed to create endpoint reddit_django_1 on network reddit_default: Bind for 0.

0:8000 Failed: port is already allocated (5 minutes ago)

1514 LF+

UTF-5 Git: master: & &

_images/4.png
Project: reddit > Project Interprater © For current project

+ Editor
+ Colors &Fonts
reStructuredText
Sass/SCSS.
Inspections
Plugins
+ Project: reddit

v Javascript
v Code Quality Tools:
JsCs
ESLint
Bower
v TypeScript
TsLint
+ Tools
SSHTerminal

Project Interpreter: | & 2.7.6 (/usr/bin/python2.7)

Diango

Jinja2

MarkupSafe
Nautilus-PyExtensions
PAM

O Vagrant O Deployment configuration (O SSH Credentials O Docker @ Docker Compose
[Docker

Configuration: || /home/kszumny/Devel/reddit/dev.yml

B [
[

command-not-found
compizconfig-python
cookiecutter
debtagshw

defer

_images/7.png

_images/f4.png
File Edit View Navigate Code Refactor Run Tools VCS Window Help

Ereddit) E1reddit) E1users) E1 migrations) [é 0004_auto_20160327_2222.py) PEKERFT TEERS Q
& Project .\ O % | % [models.py x | [0004_auto_20160327_2222.py x w
v [Ireddit ~/cookiecutter/reddit # - coding: UTF B - vig
Generated by Django 1.9.4 on 2016-63-27 22:22 i
> B1compose Siiaport .. g
» E3config 2
> Eidocs ° —
2 v Elreddt -
El v E1contrb ol dependencies = [
& (“users’, "0003_auto_20160327_2220"),
& » Elsites 1
v it
& _inic_py o operations = [
v [astatic migrations. AlterField(
» Cicss
nane="nane",
» Cifonts Field=nodels. CharField (blank=True, nax_length=255, verbose_nane="Nane of User’),
» Ciimages)
> ojs 1
» Cisass
v Eltaskapp
[& _init__py
[& celery.py
» Citemplates
v Elusers
v E1migrations
[& 0001_initial. py
8 0002_auto_20160327_2018.py
& 0003_auto_20160327_2220.py
¢ 0004_auto_20160327_2222.py
[& _init__py
Debug] Docker: migrate
G | Debugger |] Console + =l
> Variables | & Watches -
__builtins_={dict} { bytearray: <type 'bytearray'>, 'IndexError': <type 'exceptions.IndexError's, all’; <built-in function all>, 'help’: Type help()l... View|+ — + & [

@ __doc_ ={NoneType} None

@ _file_={str}'/app/reddit/users/migrations/0004_auto_20160327_2222.py'
[__name__={str}'reddit.users.migrations.0004_auto_20160327_2222'

@ _package_={str} 'reddit.users.migrations’

» & migrations= {modul<} <module 'django.db.migrations' from '/usr/local/lib/python2.7/site-packages/django/db/migrations/_init_.pyc'> atche
models= {module} <module 'django.db.models' from' /usr/local/lib/python2.7/site-packages/django/db/models/_init_.pyc'>
unicode_literals = {instance} _Feature: Feature((2, 6, 0, 'alpha’, 2), (3, 0, 0, 'alpha’, 0), 131072)

NX% #0E e

=]

% ZFavorites

& <module>, manage.py: 10

Python Console @ Terminal) 9 Version Control. % Event Log

Tests Passed: 0 passed (yesterday 22:21) 81 LF UTF o Gitmasters 6 &

_images/issue1.png
e LESt_VIEWS.PY |
Jl Docker: unserver
ugger | [E] Console +*| = ¥ M M M A ¥ =

newprs_djang:python -u /opt/.pycharn_helpers/pydev/pydevd.py --nultiproc --qt-support --client 172.17.0.1 --port SIS0 —-file /app/manage.py runserver 0.0.0.0:8000
warning: Debugger speedups using cython not found. Run **/usr/local/bin/python’ "/opt/. pycharm_helpers/pydev/setup_cython.py" build_ext --Inplace’ to build.

ts Passed: 0 passed (3 minutes ago) &1 process running.

LF: UTF-5 Git:masters &= & M

_images/f2.png
File Edit View Navigate Code Refactor Run Tools VCS Window Help

[reddit) 1 reddit) E1users) EJtests) @ test_views.py) lDocker tests-all~) > ¥ % & 5 |5 ¢
& Project .\ | # [& models.py x | & urls.py x | & views.py x | [test_views.py x
v CIreddit ~/cookiecutter/reddit fron django. test import RequestFactory
> Dicompose from test_plus. test import TestCase =
» E1config g
fron ..views import (
> Erdocs UserRedi rectView,
2| v Ereddt UserUpdateView
g » [contrib I)
& » Castatic
v » Eitaskapp © class BaseUserTestCase (TestCase) :
» Citemplates L def setp(self)
v Elusers se{;:::: self.likeiuse:() o
- Self. factory = RequestFactory
» [E1migrations
v Eltests
B _init_py class TestUserRedirectView(BaseUserTestCase):
[& Factories.py def test_get_redirect_url(self):
N # Instantiate the view directly. Never do this outside a test!
R test_admin.py view = UserRedirectView()
[& test_models.py # Generate a fake request
N request = self.factory.get(*/fake-url*)
R # Attach the user to the request
& _init__py request.user = self.user
& adapters.py # Attach the request to the view
> view. request = request
[& admin.py # Expect: '/users/testuser/, as that is the default username for
dels. # self.mke_user()
R models.py Self.assertEqual (
[& urls.py view.get_redirect url(),
& views.py *Jusers/Testuser/
)
—— class TestUserUpdateView (BaseUserTestCase!
[.coveragerc def setUp(self):
B dockerignore # call BaselserTestCase. setUp()
-&rigno super (TestUserUpdateView, self).setUp()
Run (] Docker: tests - all
rEB:E I ripER ————— 77 tests passed - 325ms
¥+ @ TestResults reddit. chha:pgmnn -u_/opt/.pycharn_helpers/pycharn/django_test_manage.py test . /app +
Testing started at 22116 ..
) v @ reddit.users.tests.test_models. TestUser 89MS| (o ting test database for alias ‘default’ I
@ test_str__ 45ms| Destroying test database for alias 'default =
L @ test_get_absolute_url 44ms %
23| v @ redditusersrests et views TestUserRedirectView aoms ©TOceSS finished vith et code 0]
@ test_get_redirect_url 40ms. =)
| v @ reddit.users.tests.test_views TestUserUpdateView s6ms a
X @ test_get_object 42ms,
R @ test_get_success_url Sams.
= v @ reddit.users.tests.test_admin. TestMyUserCreationl 103ms
2 @ test_clean_username False S3ms
; @ test_clean_username_success 50ms
~ #PythonConsole [Terminal & : Version Control @ 3:Find #5:Debug % 6:TODO % Event Log

Tests Passed: 7 passed (a minute ago)

9.1 LF: UTF-8¢ Git: master: & &

_images/f3.png
File Edit View Navigate Code Refactor Run Tools VCS Window Help

3 reddit) B3 reddit) E1users) B3 tests) @ test_views.py) GlDockertests-al~| > ¥ % & 5 ¥ ¥ E 5 Q
& Project .\ O % | % [& models.py x | & urls.py x | & views.py x | [test_views.py x | @& common.py x w
v CIreddit ~/cookiecutter/reddit arel def setUp(se1r) Y9
Self.user = self.nake_user() i
> Bcompose self.factory - RequestFactory () =
» E3config 2
» Eidocs Class TestUserRedirectView(BaseUserTestCase) :
2 v Elreddt
g » B3 contrib def test_get_redirect_url(self): self: test get_redirect url (reddit.users. tests. test_vieus. TestUserRedirectView)
i N # Instantiate the view directly. Never do this outside a test!
g mastatic P e
v » Eataskapp # Generate a_fake request
request = self.factory.get (*/fake-url")
» Citemplates # Attach the user to the request
v Elusers request.user = sel.user
- # Attach the request to the view
» Exmigrations view.request = request
v Eltests # Expect: '/users/testuser/', as that is the default username for
B It # self.mke_user()
—Init__py self.assertEqual (
[& Factories.py view.get_redirect_url(),
& test_admin.py y /users/testuser
[& test_models.py
4 test_views.py Class TestUserUpdateView(BaseUserTestCase) :
[& _init__py
ol def setp(self):
& adapters py # call BaseUserTestCase. setUp()
[& admin.py super (TestUserUpdateView, self).setUp()
& models.py # Instantiate the view directly. Never do this outside a test!
Self.view = UserUpdateview()
[& urls.py # Generate a fake request
& views.py request = self.factory.get (*/fake-url")
Attach the user to the request
it_py request.user = self.user
» [requirements # Attach the request to the view
Debug (] Docker: tests - all L
Ca | Debugger| [E] Console +* X2y B
> = Variables @ watches =
1] » = self= {TestUserRedirectView} test_get_redirect_url (reddit.users.tests.test_views TestUserRedirectView) + -t 40D
u
&
®
= atche
#*
®
o %
£[?
*
Python Console [Terminal & Version Control @ 3:Find b & Run | #5:Debug | % 6:T0D0 = EventLog

Tests Passed: 7 passed (a minute ago)

221 LF+ UTF-8¢ Git: master: & &

_images/issue2.png
$ git status
On branch master

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: . idea/project name.inl

no changes added to commit (use "git add" and/or "git commit -a'

_images/1.png
Settings

Appearance & Beh:

Keymap

Editor

Plugins

Version Control

Project: reddit

Build, Execution, Deployment
Debugger
Python Debugger
Deployment
Buildout Support.
Console
Coverage

Docker Registry
Languages & Frameworks
Tools.

Docker Compose executable:

unixc///var/run/docker.sock

docker-compose

O Import credentials from Docker Machine:

Docker Machine executable: | docker-machine

Machine:

_images/2.png
Q

[Edit Configurations
Docker: migrate

Docker: runserver
Docker: runserver_plus

€l Docker: tests - all
€l Docker: tests - class: TestUser

[Docker: tests - file: test_models
A Narbar Facke - mmd a1 1care

_images/3.png
v Colors & Fonts
reStructuredText
Sass/SCSS

Inspections
Plugins
+ Project: reddit
Project Inter
 Build, Execution, Deployment
v Console
Python Console
+ Languages & Frameworks
v Javascript
v Code Quality Tools
JSCS
ESLint
Bower
v TypeScript
TsLint
+ Tools
SSH Terminal

Project: reddit > Project Interpreter ~ For current project

Project Interpreter: | 2.7.6 (/usr/bin/python2.7)

Package
Django

Jinja2

MarkupSafe
Nautilus-PyExtensions
PAM

Pillow

PyBluez

PylcU

PyYAML
Twisted-Core
Twisted-Web
adium-theme-ubuntu
apt-xapian-index
argparse
backports.ssl-match-hostname
binaryornot

cesm

chardet

click

colorama
command-not-found
compizconfig-python
cookiecutter
debtagshw

defer
Aimmnn

Add Local

nav.xhtml

 Table of Contents

 		
 Welcome to Serpent Tracker’s documentation!

 		
 Getting Up and Running Locally

 		
 Setting Up Development Environment

 		
 Setup Email Backend

 		
 MailHog

 		
 Console

 		
 Celery

 		
 Sass Compilation & Live Reloading

 		
 Summary

 		
 Getting Up and Running Locally With Docker

 		
 Prerequisites

 		
 Build the Stack

 		
 Run the Stack

 		
 Execute Management Commands

 		
 (Optionally) Designate your Docker Development Server IP

 		
 Configuring the Environment

 		
 Tips & Tricks

 		
 Activate a Docker Machine

 		
 Debugging

 		
 Mailhog

 		
 Celery tasks in local development

 		
 Celery Flower

 		
 Settings

 		
 Other Environment Settings

 		
 Testing

 		
 Pytest

 		
 Coverage

 		
 Docker Remote Debugging

 		
 Configure Remote Python Interpreter

 		
 Known issues

_static/plus.png

_static/file.png

_static/minus.png

_static/serpent_tracker_logo.png
SERPENT TRACKER

