
serpent_tracker

Brian Hopkins

Mar 23, 2020

CONTENTS:

1 Getting Up and Running Locally 1
1.1 Setting Up Development Environment . 1
1.2 Setup Email Backend . 2
1.3 Celery . 3
1.4 Sass Compilation & Live Reloading . 3
1.5 Summary . 3

2 Getting Up and Running Locally With Docker 5
2.1 Prerequisites . 5
2.2 Build the Stack . 5
2.3 Run the Stack . 5
2.4 Execute Management Commands . 6
2.5 (Optionally) Designate your Docker Development Server IP . 6
2.6 Configuring the Environment . 6
2.7 Tips & Tricks . 7

3 Settings 9
3.1 Other Environment Settings . 10

4 Testing 11
4.1 Pytest . 11
4.2 Coverage . 11

5 Docker Remote Debugging 13
5.1 Configure Remote Python Interpreter . 14
5.2 Known issues . 18

6 Indices and tables 21

Index 23

i

ii

CHAPTER

ONE

GETTING UP AND RUNNING LOCALLY

1.1 Setting Up Development Environment

Make sure to have the following on your host:

• Python 3.7

• PostgreSQL.

• Redis, if using Celery

First things first.

1. Create a virtualenv:

$ python3.7 -m venv <virtual env path>

2. Activate the virtualenv you have just created:

$ source <virtual env path>/bin/activate

3. Install development requirements:

$ pip install -r requirements/local.txt
$ pre-commit install

.. note::

the `pre-commit` exists in the generated project as default.
for the details of `pre-commit`, follow the [site of pre-commit](https://pre-

→˓commit.com/).

4. Create a new PostgreSQL database using createdb:

$ createdb <what you have entered as the project_slug at setup stage> -U postgres
→˓--password <password>

Note: if this is the first time a database is created on your machine you might need an initial PostgreSQL set
up to allow local connections & set a password for the postgres user. The postgres documentation explains
the syntax of the config file that you need to change.

5. Set the environment variables for your database(s):

1

https://www.postgresql.org/download/
https://redis.io/download
https://www.postgresql.org/docs/current/static/app-createdb.html
http://suite.opengeo.org/docs/latest/dataadmin/pgGettingStarted/firstconnect.html
http://suite.opengeo.org/docs/latest/dataadmin/pgGettingStarted/firstconnect.html
https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

serpent_tracker

$ export DATABASE_URL=postgres://postgres:<password>@127.0.0.1:5432/<DB name
→˓given to createdb>
Optional: set broker URL if using Celery
$ export CELERY_BROKER_URL=redis://localhost:6379/0

Note: Check out the Settings page for a comprehensive list of the environments variables.

See also:

To help setting up your environment variables, you have a few options:

• create an .env file in the root of your project and define all the variables you need in it. Then you just need
to have DJANGO_READ_DOT_ENV_FILE=True in your machine and all the variables will be read.

• Use a local environment manager like direnv

6. Apply migrations:

$ python manage.py migrate

7. See the application being served through Django development server:

$ python manage.py runserver 0.0.0.0:8000

1.2 Setup Email Backend

1.2.1 MailHog

Note: In order for the project to support MailHog it must have been bootstrapped with use_mailhog set to y.

MailHog is used to receive emails during development, it is written in Go and has no external dependencies.

For instance, one of the packages we depend upon, django-allauth sends verification emails to new users signing
up as well as to the existing ones who have not yet verified themselves.

1. Download the latest MailHog release for your OS.

2. Rename the build to MailHog.

3. Copy the file to the project root.

4. Make it executable:

$ chmod +x MailHog

5. Spin up another terminal window and start it there:

./MailHog

6. Check out http://127.0.0.1:8025/ to see how it goes.

Now you have your own mail server running locally, ready to receive whatever you send it.

2 Chapter 1. Getting Up and Running Locally

https://direnv.net/
https://github.com/mailhog/MailHog
http://127.0.0.1:8025/

serpent_tracker

1.2.2 Console

Note: If you have generated your project with use_mailhog set to n this will be a default setup.

Alternatively, deliver emails over console via EMAIL_BACKEND = 'django.core.mail.backends.
console.EmailBackend'.

In production, we have Mailgun configured to have your back!

1.3 Celery

If the project is configured to use Celery as a task scheduler then by default tasks are set to run on the main thread
when developing locally. If you have the appropriate setup on your local machine then set the following in config/
settings/local.py:

CELERY_TASK_ALWAYS_EAGER = False

1.4 Sass Compilation & Live Reloading

If you’d like to take advantage of live reloading and Sass compilation you can do so with a little bit of preparation, see
sass-compilation-live-reload.

1.5 Summary

Congratulations, you have made it! Keep on reading to unleash full potential of Cookiecutter Django.

1.3. Celery 3

https://www.mailgun.com/

serpent_tracker

4 Chapter 1. Getting Up and Running Locally

CHAPTER

TWO

GETTING UP AND RUNNING LOCALLY WITH DOCKER

The steps below will get you up and running with a local development environment. All of these commands assume
you are in the root of your generated project.

Note: If you’re new to Docker, please be aware that some resources are cached system-wide and might reappear if
you generate a project multiple times with the same name (e.g. this issue with Postgres).

2.1 Prerequisites

• Docker; if you don’t have it yet, follow the installation instructions;

• Docker Compose; refer to the official documentation for the installation guide.

2.2 Build the Stack

This can take a while, especially the first time you run this particular command on your development system:

$ docker-compose -f local.yml build

Generally, if you want to emulate production environment use production.yml instead. And this is true for any
other actions you might need to perform: whenever a switch is required, just do it!

2.3 Run the Stack

This brings up both Django and PostgreSQL. The first time it is run it might take a while to get started, but subsequent
runs will occur quickly.

Open a terminal at the project root and run the following for local development:

$ docker-compose -f local.yml up

You can also set the environment variable COMPOSE_FILE pointing to local.yml like this:

$ export COMPOSE_FILE=local.yml

And then run:

5

https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/compose/install/

serpent_tracker

$ docker-compose up

To run in a detached (background) mode, just:

$ docker-compose up -d

2.4 Execute Management Commands

As with any shell command that we wish to run in our container, this is done using the docker-compose -f
local.yml run --rm command:

$ docker-compose -f local.yml run --rm django python manage.py migrate
$ docker-compose -f local.yml run --rm django python manage.py createsuperuser

Here, django is the target service we are executing the commands against.

2.5 (Optionally) Designate your Docker Development Server IP

When DEBUG is set to True, the host is validated against ['localhost', '127.0.0.1', '[::1]']. This
is adequate when running a virtualenv. For Docker, in the config.settings.local, add your host devel-
opment server IP to INTERNAL_IPS or ALLOWED_HOSTS if the variable exists.

2.6 Configuring the Environment

This is the excerpt from your project’s local.yml:

...

postgres:
build:
context: .
dockerfile: ./compose/production/postgres/Dockerfile

volumes:
- local_postgres_data:/var/lib/postgresql/data
- local_postgres_data_backups:/backups

env_file:
- ./.envs/.local/.postgres

...

The most important thing for us here now is env_file section enlisting ./.envs/.local/.postgres. Gen-
erally, the stack’s behavior is governed by a number of environment variables (env(s), for short) residing in envs/,
for instance, this is what we generate for you:

.envs
.local

.django

.postgres
.production

(continues on next page)

6 Chapter 2. Getting Up and Running Locally With Docker

serpent_tracker

(continued from previous page)

.django

.postgres

By convention, for any service sI in environment e (you know someenv is an environment when there is a
someenv.yml file in the project root), given sI requires configuration, a .envs/.e/.sI service configuration
file exists.

Consider the aforementioned .envs/.local/.postgres:

PostgreSQL
--
POSTGRES_HOST=postgres
POSTGRES_DB=<your project slug>
POSTGRES_USER=XgOWtQtJecsAbaIyslwGvFvPawftNaqO
POSTGRES_PASSWORD=jSljDz4whHuwO3aJIgVBrqEml5Ycbghorep4uVJ4xjDYQu0LfuTZdctj7y0YcCLu

The three envs we are presented with here are POSTGRES_DB, POSTGRES_USER, and POSTGRES_PASSWORD (by
the way, their values have also been generated for you). You might have figured out already where these definitions
will end up; it’s all the same with django service container envs.

One final touch: should you ever need to merge .envs/production/* in a single .env run the
merge_production_dotenvs_in_dotenv.py:

$ python merge_production_dotenvs_in_dotenv.py

The .env file will then be created, with all your production envs residing beside each other.

2.7 Tips & Tricks

2.7.1 Activate a Docker Machine

This tells our computer that all future commands are specifically for the dev1 machine. Using the eval command we
can switch machines as needed.:

$ eval "$(docker-machine env dev1)"

2.7.2 Debugging

ipdb

If you are using the following within your code to debug:

import ipdb; ipdb.set_trace()

Then you may need to run the following for it to work as desired:

$ docker-compose -f local.yml run --rm --service-ports django

2.7. Tips & Tricks 7

serpent_tracker

django-debug-toolbar

In order for django-debug-toolbar to work designate your Docker Machine IP with INTERNAL_IPS in
local.py.

2.7.3 Mailhog

When developing locally you can go with MailHog for email testing provided use_mailhog was set to y on setup.
To proceed,

1. make sure mailhog container is up and running;

2. open up http://127.0.0.1:8025.

2.7.4 Celery tasks in local development

When not using docker Celery tasks are set to run in Eager mode, so that a full stack is not needed. When using docker
the task scheduler will be used by default.

If you need tasks to be executed on the main thread during development set CELERY_TASK_ALWAYS_EAGER =
True in config/settings/local.py.

Possible uses could be for testing, or ease of profiling with DJDT.

2.7.5 Celery Flower

Flower is a “real-time monitor and web admin for Celery distributed task queue”.

Prerequisites:

• use_docker was set to y on project initialization;

• use_celery was set to y on project initialization.

By default, it’s enabled both in local and production environments (local.yml and production.yml Docker
Compose configs, respectively) through a flower service. For added security, flower requires its clients to provide
authentication credentials specified as the corresponding environments’ .envs/.local/.django and .envs/
.production/.django CELERY_FLOWER_USER and CELERY_FLOWER_PASSWORD environment variables.
Check out localhost:5555 and see for yourself.

8 Chapter 2. Getting Up and Running Locally With Docker

https://github.com/mailhog/MailHog/
https://github.com/mher/flower

CHAPTER

THREE

SETTINGS

This project relies extensively on environment settings which will not work with Apache/mod_wsgi setups. It has
been deployed successfully with both Gunicorn/Nginx and even uWSGI/Nginx.

For configuration purposes, the following table maps environment variables to their Django setting and project settings:

Environment Variable Django Setting Development De-
fault

Production De-
fault

DJANGO_READ_DOT_ENV_FILE READ_DOT_ENV_FILE False False

Environment Variable Django Setting Development Default Production Default
DATABASE_URL DATABASES auto w/ Docker; post-

gres://project_slug w/o
raises error

DJANGO_ADMIN_URL n/a ‘admin/’ raises error
DJANGO_DEBUG DEBUG True False
DJANGO_SECRET_KEY SECRET_KEY auto-generated raises error
DJANGO_SECURE_BROWSER_XSS_FILTERSE-

CURE_BROWSER_XSS_FILTER
n/a True

DJANGO_SECURE_SSL_REDIRECTSE-
CURE_SSL_REDIRECT

n/a True

DJANGO_SECURE_CONTENT_TYPE_NOSNIFFSE-
CURE_CONTENT_TYPE_NOSNIFF

n/a True

DJANGO_SECURE_FRAME_DENYSE-
CURE_FRAME_DENY

n/a True

DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINSHSTS_INCLUDE_SUBDOMAINSn/a True
DJANGO_SESSION_COOKIE_HTTPONLYSES-

SION_COOKIE_HTTPONLY
n/a True

DJANGO_SESSION_COOKIE_SECURESES-
SION_COOKIE_SECURE

n/a False

DJANGO_DEFAULT_FROM_EMAILDE-
FAULT_FROM_EMAIL

n/a “your_project_name <nore-
ply@your_domain_name>”

DJANGO_SERVER_EMAIL SERVER_EMAIL n/a “your_project_name <nore-
ply@your_domain_name>”

DJANGO_EMAIL_SUBJECT_PREFIXEMAIL_SUBJECT_PREFIXn/a “[your_project_name] “
DJANGO_ALLOWED_HOSTS ALLOWED_HOSTS [‘*’] [‘your_domain_name’]

The following table lists settings and their defaults for third-party applications, which may or may not be part of your
project:

9

mailto:noreply@your_domain_name
mailto:noreply@your_domain_name
mailto:noreply@your_domain_name
mailto:noreply@your_domain_name

serpent_tracker

Environment Variable Django Setting Development Default Production De-
fault

CELERY_BROKER_URL CEL-
ERY_BROKER_URL

auto w/ Docker; raises
error w/o

raises error

DJANGO_AWS_ACCESS_KEY_ID AWS_ACCESS_KEY_ID n/a raises error
DJANGO_AWS_SECRET_ACCESS_KEYAWS_SECRET_ACCESS_KEYn/a raises error
DJANGO_AWS_STORAGE_BUCKET_NAMEAWS_STORAGE_BUCKET_NAMEn/a raises error
DJANGO_AWS_S3_REGION_NAMEAWS_S3_REGION_NAME n/a None
DJANGO_GCP_STORAGE_BUCKET_NAMEGS_BUCKET_NAME n/a raises error
GOOGLE_APPLICATION_CREDENTIALSn/a n/a raises error
SENTRY_DSN SENTRY_DSN n/a raises error
DJANGO_SENTRY_LOG_LEVEL SENTRY_LOG_LEVEL n/a logging.INFO
MAILGUN_API_KEY MAILGUN_API_KEY n/a raises error
MAILGUN_DOMAIN MAIL-

GUN_SENDER_DOMAIN
n/a raises error

MAILGUN_API_URL n/a n/a “https://api.
mailgun.net/v3”

3.1 Other Environment Settings

DJANGO_ACCOUNT_ALLOW_REGISTRATION (=True) Allow enable or disable user registration through
django-allauth without disabling other characteristics like authentication and account management. (Django
Setting: ACCOUNT_ALLOW_REGISTRATION)

10 Chapter 3. Settings

https://api.mailgun.net/v3
https://api.mailgun.net/v3

CHAPTER

FOUR

TESTING

We encourage users to build application tests. As best practice, this should be done immediately after documentation
of the application being built, before starting on any coding.

4.1 Pytest

This project uses the Pytest, a framework for easily building simple and scalable tests. After you have set up to develop
locally, run the following commands to make sure the testing environment is ready:

$ pytest

You will get a readout of the users app that has already been set up with tests. If you do not want to run the pytest on
the entire project, you can target a particular app by typing in its location:

$ pytest <path-to-app-in-project/app>

If you set up your project to develop locally with docker, run the following command:

$ docker-compose -f local.yml run --rm django pytest

Targeting particular apps for testing in docker follows a similar pattern as previously shown above.

4.2 Coverage

You should build your tests to provide the highest level of code coverage. You can run the pytest with code
coverage by typing in the following command:

$ docker-compose -f local.yml run --rm django coverage run -m pytest

Once the tests are complete, in order to see the code coverage, run the following command:

$ docker-compose -f local.yml run --rm django coverage report

Note: At the root of the project folder, you will find the pytest.ini file. You can use this to customize the pytest to
your liking.

There is also the .coveragerc. This is the configuration file for the coverage tool. You can find out more about
configuring coverage.

11

https://docs.pytest.org/en/latest/example/simple.html
./developing-locally.html
./developing-locally.html
./developing-locally-docker.html
https://docs.pytest.org/en/latest/customize.html
https://coverage.readthedocs.io/en/v4.5.x/config.html

serpent_tracker

See also:

For unit tests, run:

$ python manage.py test

Since this is a fresh install, and there are no tests built using the Python unittest library yet, you should get feedback
that says there were no tests carried out.

12 Chapter 4. Testing

https://docs.python.org/3/library/unittest.html#module-unittest

CHAPTER

FIVE

DOCKER REMOTE DEBUGGING

To connect to python remote interpreter inside docker, you have to make sure first, that Pycharm is aware of your
docker.

Go to Settings > Build, Execution, Deployment > Docker. If you are on linux, you can use docker directly using its
socket unix:///var/run/docker.sock, if you are on Windows or Mac, make sure that you have docker-machine installed,
then you can simply Import credentials from Docker Machine.

13

serpent_tracker

5.1 Configure Remote Python Interpreter

This repository comes with already prepared “Run/Debug Configurations” for docker.

But as you can see, at the beginning there is something wrong with them. They have red X on django icon, and
they cannot be used, without configuring remote python interpteter. To do that, you have to go to Settings > Build,
Execution, Deployment first.

Next, you have to add new remote python interpreter, based on already tested deployment settings. Go to Settings >
Project > Project Interpreter. Click on the cog icon, and click Add Remote.

14 Chapter 5. Docker Remote Debugging

serpent_tracker

Switch to Docker Compose and select local.yml file from directory of your project, next set Service name to django

Having that, click OK. Close Settings panel, and wait few seconds. . .

After few seconds, all Run/Debug Configurations should be ready to use.

5.1. Configure Remote Python Interpreter 15

serpent_tracker

Things you can do with provided configuration:

• run and debug python code

• run and debug tests

16 Chapter 5. Docker Remote Debugging

serpent_tracker

• run and debug migrations or different django management commands

5.1. Configure Remote Python Interpreter 17

serpent_tracker

• and many others..

5.2 Known issues

• Pycharm hangs on “Connecting to Debugger”

This might be fault of your firewall. Take a look on this ticket - https://youtrack.jetbrains.com/issue/PY-18913

• Modified files in .idea directory

Most of the files from .idea/ were added to .gitignore with a few exceptions, which were made, to provide “ready to
go” configuration. After adding remote interpreter some of these files are altered by PyCharm:

18 Chapter 5. Docker Remote Debugging

https://youtrack.jetbrains.com/issue/PY-18913

serpent_tracker

In theory you can remove them from repository, but then, other people will lose a ability to initialize a project from
provided configurations as you did. To get rid of this annoying state, you can run command:

$ git update-index --assume-unchanged serpent_tracker.iml

5.2. Known issues 19

serpent_tracker

20 Chapter 5. Docker Remote Debugging

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

21

serpent_tracker

22 Chapter 6. Indices and tables

INDEX

D
Docker, 5

P
pip, 1
PostgreSQL, 1

V
virtualenv, 1

23

	Getting Up and Running Locally
	Setting Up Development Environment
	Setup Email Backend
	Celery
	Sass Compilation & Live Reloading
	Summary

	Getting Up and Running Locally With Docker
	Prerequisites
	Build the Stack
	Run the Stack
	Execute Management Commands
	(Optionally) Designate your Docker Development Server IP
	Configuring the Environment
	Tips & Tricks

	Settings
	Other Environment Settings

	Testing
	Pytest
	Coverage

	Docker Remote Debugging
	Configure Remote Python Interpreter
	Known issues

	Indices and tables
	Index

